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ABSTRACT

The first experimental results on the
RF performance of p-well MESFETS are
presented. It is shown that the small-
signal equivalent circuit for the p-well
MESFET must include a series RC branch
between the source and drain to properly
model the undepleted well and its contact.
The dependence of the equivalent circuit
parameter values on the doping of the p-
well is presented and shown to have only a
minor effect on the RF performance.

INTRODUCTION

The use of p-type implanted layers in
n-channel GaAs MESFET technology is
increasing due to the resultant
improvements in key device
characteristics. Previously reported
improvements include smaller threshold
voltage spreads (1) , reduced short-channel
effects (2), reduced frequency dispersion

the small-signal conductance (3),
=duced drain current transients (4), and
to some degree, improved backdating (5).
The implant doses are generally chosen
such that the p-layers are fully depleted
under normal operating conditions. This
insures maximum operating frequency, f~,
by minimizing the additional capacitance
associated with the p-layers.

We have recently developed a GaAs p-
well MESFET technology which uses an
additional p+ implant layer to contact the
p-type region (p-well) which now
completely surrounds the n-channel MESFET.
A cross section of the p-well GaAs MESFET
is shown in Fig. 1. By connecting this
p-well contact to the n+ source, the p-
well is maintained at a fixed potential.
As a result, the p-well MESFET technology
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totally eliminates backdating, drain

current transients with long time

constants, and frequency-dependence of the
output conductance at low frequencies

(< 100 kHZ) (6). Thus, it is ideally
suited for analog-digital IC applications.
In this paper, we present experimental

results on the RF performance of the p-
well MESFET structure showing that it iS
also well-suited for microwave

applications.

EXPERIMENTAL

The p-well MESFET}S RF performance as
a function of the p-well doping level, was
evaluated using wafers fabricated with
peak p-type implant concentrations of 2,
4, 8, and 16 x 1016 cm-3 below the n-type
channel. A control wafer was also
processed with no p-type implants. The
n-channel implant doses of all wafers were
adjusted so that all MESFETS had similar

%ss and VP values. The S-parameters were
measured using Cascade Microtech probes
and an HP851O network analyzer at
frequencies between 100 MHz and 26.1 GHz
at I~~=Id~~ with Vd~=2 .5 volts . All
measurements presented herein were taken
from non-self-aligned recessed-gate
devices with 300 urn gate widths, 1 urn gate
lengths, and 3 urn channel lengths.

EQUIVALENT CIRCUIT

The small-signal equivalent circuit
model is derived directly from the
physical structure of the p-well GaAs
MESFET and is shown in Fig. 2. This model
differs from more conventional models by
the addition of a series RC branch between
the drain and source. This branch accounts
for the resistance of the undepleted
portion of the p-type well connecting the

P+ contact to the source, and the
depletion capacitance of the drain n+-p-
well junction. The equivalent-circuit
model was implemented using Touchstone and
the small-signal element values were
optimized until the mean error between the
measured and modeled S-parameters was less
than 0.05 percent.

1077

CH2848-O19010000- 1O77$O1.0001990 IEEE 1990 IEEE MTT-S Digest



RESULTS

The modeled and measured S-parameters
for a p-well device with the peak well
doping of 16 x 1016 cm-3 are shown in Fig.
3. s,, and S22 are shown on the Smith chart
in Fig. 3. Failure to include ~ and CP in
the model results in a poor fit as shown
in Fig. 4. It is seen from Fig. 5 that the
series RC network associated with the
constrained p-well introduces a pole and
zero (doublet) in the frequency response
of s~l. For the wafers with lower p-type
doping in the p-well, the magnitude of the
shift is sma11 due to the relative
magnitude of ~ with respect to ~~ and
therefore had much less effect.

The calculated equivalent circuit
values of the capacitances, ~~, :p I and gm
for the equivalent circuit in Fig. 2 are
shown in Figs. 6-12. The shifts in the
values of Crjs, C@, and ed~ shown in Figs.
6-8 respectfully do not correlate with the
doping of the p-type layers and are the
result of variations in the threshold
voltage from wafer to wafer. As expected,

% decreases dramatically for the more
conductive p-type layers as shown in Fig.
9, while C increases strongly as shown in
Fig. 10. ~he dependen:; :oy~eo;a~t~alp;
well doping in Fig.
due to shortcomings of the optimization.
From Fig. 5 it is seen that the pole-zero
doublet introduced by ~ and CP is at the
lower boundary of the frequency spectrum
for which data was measured. Thus the
optimizer had to evaluate

2
Cp r and to

and to some extent Qs from ;ta available
for only a couple of frequencies. The
value of gm is relatively insensitive to
the p-type dose under the channel as shown
in Fig. 12 and shows variations due to
different threshold voltages of the
different wafers. Fig. 13 shows that the
transition frequency, f~, changes only
modestly, decreasing by less than 10
percent for the wafer with the highest p-
type well doping as compared to the
control wafer.

CONCLUSIONS

In this paper we have shown that the
p~well GaAs MESFET is a viable device for
microwave as well as precision analog-
digital applications. An accurate small-
signal equivalent-circuit model has been
developed based on the physical structure
of the p-well GaAs MESFET device.

REFERENCES

(2) K. Yamasaki, N. Kato, and M.
Hirayama, ItBuried p-layer SAINT for VerY

high-speed GaAs LSIts with submicrometer
gate length,” IEEE Trans. Electron DeV.,
Vol . ED-32, no. 11 , pp. 2420-2425, Nov.,
1985.

(3) P.c. Canfield, D.J. Allstot, J.
Medinger, L. Forbes, A.J. McCamant, B.A.
Vetanen, B. Odekirk, E.P. Finchem, and
K.R. Gleason, ‘tBuried channel GaAs
MESFETS with improved small-signal
characteristics,” IEEE GaAs IC Symposium
Technical Digest, pp. 163-166, 1987.

(4) P. Canfield, L. Forbes, R. Gleasonr
and A. McCamant, ItDrain current transient

suppression in buried channel GaAs
MESFETs,tr Proc. 4th Semi-Insulating III-V
Materials Conf.: Hakoner H. Kukimoto and
S. Miyazawa; eds., Tokyo: Ohmsha, LTD. and
Amsterdam: North-Holland Publ.
573-578, 1986.

CO*J PP*

(5) E.P. Finchem, W.A. Vetanen, B.
Odekirkr and P.C. Canfield, “Reduction of
the backdating effect in GaAs MESFET TCS
by charge trapping at the backgate
electrode ,11 IEEE GaAs IC Symposium
Technical Digest, pp. 231-2341 1988.

(6) P.C. Canfield and D.J. Allstot, 11A

p-well GaAs MESFET technology,” Digest of
the IEEE Intern. Solid State Circuits
Conf., Feb., 1990.

Fig. 1 Cross section of the p-well GaAs
MESFET .

(1) Y. Umemoto, S. Takahashi, N.
Natsunagar and M. Nakamurar ‘lGaAs MESFETS
with a buried p-layer for large-scale
integration ,~t Electron. Lett. , vol. 30,
no. 2, pp. 98-100, Jan., 1984.

1078



.4
Fig. 2 Small-signal equivalent-circuit
model used to model the p-well GaAs
MESFET .
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Fig. 3 Measured and modeled S1l and S22
for the model in Fig. 2. * measured s,,,
= modeled S1l, X measured S22, + modeled
S*Z .

Fig. 4 Meae.m?ed and modeled S11 and S22
for the model neglecting

2
and CP. *

measured S1l, := modeled S1l, measured S22,
+ modeled S22.
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Fig. 5 Frequency response of S21 showing
the pole zero doublet introduced by the
series RC time constant.
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Fig. 6 Gate to source capacitance (C9=)
as a function of peak p-well doping.
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Fig. 7 Gate to drain capacitance
a function of peak p-well doping.
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Fig. 8 Drain to source capacitance (cd. )
as a function of peak p-well doping.
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9 Resistance associated .

;%~pleted p-region under the ch~~~~l (t~
as a function of peak p-well doping.
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Fig. 10 Capacitance of depleted p-region

near the drain (CP) as a function of peak
p-well doping.
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Fig. 11 Channel resistance (%) as a
function of peak p-well doping.
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Fig. 12 Transconductance (9.) as a
function of peak p-well doping.
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Fig. 13 Transition frequency (f,) as a
function of peak p-well doping.
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